
Workgroups2 Documentation
Release 1.2

Sergey Pashinin

Sep 27, 2017

Contents

1 Installation 3

2 Usage 5
2.1 Basic commands . 5
2.2 Settings . 5

3 How does it work? 7
3.1 Serialization / Deserialization of objects . 7
3.2 Loading a session file . 8
3.3 Saving session . 8
3.4 Switching workgroups . 8

4 Data structures 9
4.1 General info . 9
4.2 Session . 10
4.3 Workgroup . 10
4.4 Wconfig . 11
4.5 Wtree . 11
4.6 Win . 11
4.7 Buffer . 11
4.8 Parameters . 11

5 Tests 13
5.1 Serialization tests . 13

6 Problems 15
6.1 Buffer was not restored . 15

7 Contribute 17
7.1 Start using the git repo . 17
7.2 Modify something . 17

8 Indices and tables 19

i

ii

Workgroups2 Documentation, Release 1.2

Like it: The original workgroups was already wonderful, the best window configuration manager for Emacs. The new
maintainer has lifted the package from merely awesome to wild ecstasy.

Contents:

Contents 1

Workgroups2 Documentation, Release 1.2

2 Contents

CHAPTER 1

Installation

Very simple with recent Emacs. Make sure you have these lines:

(require 'package)
(add-to-list 'package-archives

'("melpa" . "http://melpa.milkbox.net/packages/") t)

before

(package-initialize)

Then type M-x list-packages

mark workgroups2 with i and install with x.

Then Configure and activate workgroups-mode.

3

Workgroups2 Documentation, Release 1.2

4 Chapter 1. Installation

CHAPTER 2

Usage

The whole config should look like this:

(require 'workgroups2)
;; Change some settings
(workgroups-mode 1) ; put this one at the bottom of .emacs (init.el)

Now you activated workgroups-mode.

Basic commands

Most commands are bound to both <prefix> <key> and <prefix> C-<key>.

By default prefix is: C-c z (To change it - see settings below)

<prefix> <key>
<prefix> c ; create workgroup
<prefix> A ; rename workgroup
<prefix> k ; kill workgroup
<prefix> v ; switch to workgroup
<prefix> C-s ; save session
<prefix> C-f ; load session

Settings

(require 'workgroups2)
;; Your settings here

;;(setq wg-session-load-on-start t) ; default: (not (daemonp))

;; Change prefix key (before activating WG)

5

Workgroups2 Documentation, Release 1.2

(setq wg-prefix-key (kbd "C-c z"))

;; Change workgroups session file
(setq wg-session-file "~/.emacs.d/.emacs_workgroups")

;; Set your own keyboard shortcuts to reload/save/switch WGs:
;; "s" == "Super" or "Win"-key, "S" == Shift, "C" == Control
(global-set-key (kbd "<pause>") 'wg-reload-session)
(global-set-key (kbd "C-S-<pause>") 'wg-save-session)
(global-set-key (kbd "s-z") 'wg-switch-to-workgroup)
(global-set-key (kbd "s-/") 'wg-switch-to-previous-workgroup)

(workgroups-mode 1) ; put this one at the bottom of .emacs

More settings

You can use M-x customize-group RET workgroups to see all variables and faces to change.

;; What to do on Emacs exit / workgroups-mode exit?
(setq wg-emacs-exit-save-behavior 'save) ; Options: 'save 'ask nil
(setq wg-workgroups-mode-exit-save-behavior 'save) ; Options: 'save 'ask nil

;; Mode Line changes
;; Display workgroups in Mode Line?
(setq wg-mode-line-display-on t) ; Default: (not (featurep 'powerline))
(setq wg-flag-modified t) ; Display modified flags as well
(setq wg-mode-line-decor-left-brace "["

wg-mode-line-decor-right-brace "]" ; how to surround it
wg-mode-line-decor-divider ":")

Hooks

Hooks’ names can tell when they are executed

workgroups-mode-hook ; when `workgroups-mode' is turned on
workgroups-mode-exit-hook ; `workgroups-mode' is turned off
wg-before-switch-to-workgroup-hook
wg-after-switch-to-workgroup-hook

6 Chapter 2. Usage

CHAPTER 3

How does it work?

Note: The most important part to understand is Data structures. After that it’s easy to write code in other parts.

Serialization / Deserialization of objects

In Emacs we have many types of objects like:

• #<buffer tests.el>

• #<marker at 3427 in tests.el>

• simple "string"

• integers 123

• ... and other

And we have to represent them as text to save. This is done using wg-pickel and functions defined in this var:

(defvar wg-pickel-object-serializers
'((integer . identity)
(float . identity)
(string . identity)
(symbol . wg-pickel-symbol-serializer)
(cons . wg-pickel-cons-serializer)
(vector . wg-pickel-vector-serializer)
(hash-table . wg-pickel-hash-table-serializer)
(buffer . wg-pickel-buffer-serializer)
(marker . wg-pickel-marker-serializer))

"Alist mapping types to object serialization functions.")

So when you meet an object that cannot be represented as text - you:

1. Add it’s type in this variable

7

Workgroups2 Documentation, Release 1.2

2. Write mentioned “serializer” function itself

For example for “buffer” objects:

(defun wg-pickel-buffer-serializer (buffer)
"Return BUFFER's UID in workgroups buffer list."
(list 'b (wg-add-buffer-to-buf-list buffer)))

‘b - is just a marker that will tell to run wg-pickel-deserialize-buffer when restoring a buffer.

Last element is buffer UID and it is enough to restore the buffer with (wg-restore-buffer
(wg-find-buf-by-uid uid))

Loading a session file

It is done in wg-open-session. First you read a Session object from file in this line:

(let ((session (read (f-read-text filename))))
...

Then you just switch to 1 of the saved workgroups in this object according to settings.

Saving session

Writing objects to file is done in... (function stack):

wg-write-sexp-to-file

wg-pickel-all-session-parameters

wg-pickel-workgroup-parameters wg-pickel <– main function

So the main function to transform Lisp objects to strings is wg-pickel.

Switching workgroups

8 Chapter 3. How does it work?

CHAPTER 4

Data structures

Let’s look at ~/.workgroups file:

[cl-struct-wg-session "0G3A08BU1E35GEA0-18GPMY" ...
([cl-struct-wg-workgroup "0G3A08D8APKR11T4-1C1G10" "Tasks" ...

[cl-struct-wg-wconfig "0GGI0JY4B3HD0WEO-86RSR3" ...
[cl-struct-wg-wtree ...

([cl-struct-wg-win ...
[cl-struct-wg-win ...

General info

All these structs (better to say functions to work with these objects) are created with wg-defstruct macro. For
example for:

(wg-defstruct wg session
(uid (wg-generate-uid))
(field-2)
...

wg-defstruct creates functions like wg-make-session, wg-copy-session and wg-session-..., (to ma-
nipulate structures). Then you will have (wg-session-field-2 obj) and other defined fields to read properties
of this object.

To set values (setf ...) function is used.

Example for current session object:

;; Read
(wg-session-file-name (wg-current-session)) ; Get a filename of current
→˓session
(wg-workgroup-parameters (wg-current-workgroup)) ; Get workgroup parameters

;; Write (used just before saving session to file)

9

Workgroups2 Documentation, Release 1.2

(setf (wg-session-file-name (wg-current-session)) filename) ; Set session filename
(setf (wg-session-version (wg-current-session)) wg-version) ; Write workgroups
→˓version

Warning: Changing these defstructs themselves may break everyone’s session files. That’s why many of them
have Parameters field. This one is exactly for extending saved information.

How to work with these structures?

Ok, we define a session structure, and you can get the value of it with (wg-current-session)

wg-defstruct creates functions like wg-session-..., wg-make-session (to manipulate structures). So if you have (wg-
defstruct wg session ...) - then you have wg-session-file-name and other defined fields.

Session

The session object is the top level “class” that has workgroups in it.

(wg-defstruct wg session
(uid (wg-generate-uid))
(name)
(modified)
(parameters)
(file-name)
(version wg-version)
(workgroup-list)
(buf-list))

Note: List of buffers is a common pool for all workgroups. When you open a file (doesn’t matter in which workgroup)
- the corresponding Buffer object will be added in wg-session-buf-list

Workgroup

workgroups contain frame states (that includes window configuration)

(wg-defstruct wg workgroup
(uid (wg-generate-uid))
(name)
(modified)
(parameters)
(base-wconfig)
(selected-frame-wconfig)
(saved-wconfigs)
(strong-buf-uids)
(weak-buf-uids))

10 Chapter 4. Data structures

Workgroups2 Documentation, Release 1.2

Wconfig

(wg-defstruct wg wconfig
(uid (wg-generate-uid))
(name)
(parameters)
(left)
(top)
(width)
(height)
(vertical-scroll-bars)
(scroll-bar-width)
(wtree))

What’s the difference between wconfig and wtree? Well a workgroup can have several wconfigs (buffer layouts). But
to keep it simple let’s say each workgroup has only 1 wconfig.

wconfig = wtree + additional parameters

Wtree

(wg-defstruct wg wtree
(uid)
(dir)
(edges)
(wlist))

Win

(wg-defstruct wg win
(uid)
(parameters)
(edges)
(point)
(start)
(hscroll)
(dedicated)
(selected)
(minibuffer-scroll)
(buf-uid))

Buffer

Parameters

Changing main structures may lead to huge problems in compatibility. That’s why there are parameters for Session,
Workgroup, Wconfig and Win objects. They allow you to save your custom data.

For example to set (key, value) pair for current workgroup:

4.4. Wconfig 11

Workgroups2 Documentation, Release 1.2

;; Write (key, value)
(wg-set-workgroup-parameter
'ecb ; name
(and (boundp 'ecb-minor-mode) ecb-minor-mode)) ; value

Usually these functions are called like:

wg-<object>-parameter ; to read
wg-set-<object>-parameter ; to set
wg-remove-<object>-parameter ; to remove parameter

For session: wg-session-parameter, wg-set-session-parameter, wg-remove-session-parameter For workgroup: wg-
workgroup-parameter, wg-set-workgroup-parameter, wg-remove-workgroup-parameter

12 Chapter 4. Data structures

CHAPTER 5

Tests

Tests are cool now. To run them just use:

make deps
make testgui

Tests also run automatically on Travis-CI using the GUI version of Emacs. So you can tests any frames as on your
desktop.

Tests themselves are in tests/workgroups2-tests.el

Serialization tests

If you see an error like this:

wg-add-buffer-to-buf-list(nil)
wg-pickel-marker-serializer(#<marker in no buffer>)
#[(obj id) "..." [id obj result wg-pickel-object-serializer] 3](#<marker in
→˓no buffer> 18)
maphash(#[(obj id) "..." [id obj result wg-pickel-object-serializer] 3]
→˓#s(hash-table size 65 test eq rehash-size 1.5 rehash-threshold 0.8 data (((
→˓#<buffer todo-orgx.org> #<marker at 1 in todo-orgx.org> #<marker at 158366
→˓in todo-orgx.org>) (#<buffer refile-orgx.org> #<marker at 39 in refile-
→˓orgx.org> #<marker at 39 in refile-orgx.org>) (nil #<marker in no buffer> #
→˓<marker in no buffer>)) 0 (#<buffer todo-orgx.org> #<marker at 1 in todo-
→˓orgx.org> #<marker at 158366 in todo-orgx.org>) 1 #<buffer todo-orgx.org>
→˓2 (#<marker at 1 in todo-orgx.org> #<marker at 158366 in todo-orgx.org>) 3
→˓#<marker at 1 in todo-orgx.org> 4 (#<marker at 158366 in todo-orgx.org>) 5
→˓#<marker at 158366 in todo-orgx.org> 6 nil 7 ((#<buffer refile-orgx.org> #
→˓<marker at 39 in refile-orgx.org> #<marker at 39 in refile-orgx.org>) (nil
→˓#<marker in no buffer> #<marker in no buffer>)) 8 (#<buffer refile-orgx.
→˓org> #<marker at 39 in refile-orgx.org> #<marker at 39 in refile-orgx.org>
→˓) 9 #<buffer refile-orgx.org> 10 (#<marker at 39 in refile-orgx.org> #
→˓<marker at 39 in refile-orgx.org>) 11 #<marker at 39 in refile-orgx.org>
→˓12 (#<marker at 39 in refile-orgx.org>) 13 #<marker at 39 in refile-orgx.
→˓org> 14 ((nil #<marker in no buffer> #<marker in no buffer>)) 15 (nil #
→˓<marker in no buffer> #<marker in no buffer>) 16 (#<marker in no buffer> #
→˓<marker in no buffer>) 17 #<marker in no buffer> 18 (#<marker in no buffer>
→˓) 19 #<marker in no buffer> 20 ...)))

13

https://travis-ci.org/pashinin/workgroups2/builds

Workgroups2 Documentation, Release 1.2

wg-pickel-serialize-objects(#s(hash-table size 65 test eq rehash-size 1.5
→˓rehash-threshold 0.8 data (((#<buffer todo-orgx.org> #<marker at 1 in todo-
→˓orgx.org> #<marker at 158366 in todo-orgx.org>) (#<buffer refile-orgx.org>
→˓#<marker at 39 in refile-orgx.org> #<marker at 39 in refile-orgx.org>)
→˓(nil #<marker in no buffer> #<marker in no buffer>)) 0 (#<buffer todo-orgx.
→˓org> #<marker at 1 in todo-orgx.org> #<marker at 158366 in todo-orgx.org>)
→˓1 #<buffer todo-orgx.org> 2 (#<marker at 1 in todo-orgx.org> #<marker at
→˓158366 in todo-orgx.org>) 3 #<marker at 1 in todo-orgx.org> 4 (#<marker at
→˓158366 in todo-orgx.org>) 5 #<marker at 158366 in todo-orgx.org> 6 nil 7 ((
→˓#<buffer refile-orgx.org> #<marker at 39 in refile-orgx.org> #<marker at
→˓39 in refile-orgx.org>) (nil #<marker in no buffer> #<marker in no buffer>
→˓)) 8 (#<buffer refile-orgx.org> #<marker at 39 in refile-orgx.org> #
→˓<marker at 39 in refile-orgx.org>) 9 #<buffer refile-orgx.org> 10 (#
→˓<marker at 39 in refile-orgx.org> #<marker at 39 in refile-orgx.org>) 11 #
→˓<marker at 39 in refile-orgx.org> 12 (#<marker at 39 in refile-orgx.org>)
→˓13 #<marker at 39 in refile-orgx.org> 14 ((nil #<marker in no buffer> #
→˓<marker in no buffer>)) 15 (nil #<marker in no buffer> #<marker in no
→˓buffer>) 16 (#<marker in no buffer> #<marker in no buffer>) 17 #<marker in
→˓no buffer> 18 (#<marker in no buffer>) 19 #<marker in no buffer> 20 ...)))
wg-pickel(((#<buffer todo-orgx.org> #<marker at 1 in todo-orgx.org> #<marker
→˓at 158366 in todo-orgx.org>) (#<buffer refile-orgx.org> #<marker at 39 in
→˓refile-orgx.org> #<marker at 39 in refile-orgx.org>) (nil #<marker in no
→˓buffer> #<marker in no buffer>)))
...

then we have a problem in wg-pickel function. More precisely object #<marker in no buffer> cannot be
serialized. And that was a bug.

To create a test in workgroups2-tests.el for such situation find this:

(defmacro test-pickel (value)
"Test `wg-pickel' `wg-unpickel' on VALUE."
`(eq (wg-unpickel (wg-pickel ,value)) ,value))

(ert-deftest 110-wg-pickel ()
(test-pickel 123)
(test-pickel "str")
(test-pickel 'symbol)
(test-pickel (current-buffer)) ; #<buffer tests.el>
(test-pickel (point-marker)) ; #<marker at 3427 in tests.el>
(test-pickel (make-marker)) ; #<marker in no buffer>
(test-pickel (list 'describe-variable 'help-xref-stack-item (get-buffer

→˓"*Help*")))
)

And pass an object that cannot be serialized and should be checked. Then you need to fix something in wg-pickel,
see Serialization / Deserialization of objects.

14 Chapter 5. Tests

CHAPTER 6

Problems

You do have problems, right?

• Buffer was not restored

– Restored, but not the way I want

Buffer was not restored

I doubt it was a simple file buffer (or report a bug).

Warning: You know major-mode you use better than me. So please if you ask to add support for any
particular major-mode - write how you install, configure and run yours.

Such complex buffers are called “special buffers”. A simple way to restore them is to use wg-support macro:

(wg-support 'inferior-emacs-lisp-mode 'ielm
`((deserialize . ,(lambda (buffer vars)

(ielm) (get-buffer "*ielm*")))))

To understand how this works - see special-buffers

Restored, but not the way I want

Discuss it

15

https://github.com/pashinin/workgroups2/issues/new
https://github.com/pashinin/workgroups2/issues/new

Workgroups2 Documentation, Release 1.2

16 Chapter 6. Problems

CHAPTER 7

Contribute

Start using the git repo

1. Remove workgroups2 package you installed from Melpa

2. Clone the repo from Github (or make a submodule in your .emacs repo)

cd ~/some/path
git clone https://github.com/pashinin/workgroups2.git

cd ~/.emacs.d
git submodule add git://github.com/pashinin/workgroups2.git workgroups2

3. Add repo’s src/ directory to load-path and then use a simple (require ...)

(add-to-list 'load-path "~/.emacs.d/workgroups2/src")
(require 'workgroups2)

;; your existing settings...
(workgroups-mode 1)

Then to make changes I think you need to understand How this extension work.

Modify something

17

https://github.com/pashinin/workgroups2

Workgroups2 Documentation, Release 1.2

18 Chapter 7. Contribute

CHAPTER 8

Indices and tables

• genindex

• modindex

• search

19

	Installation
	Usage
	Basic commands
	Settings

	How does it work?
	Serialization / Deserialization of objects
	Loading a session file
	Saving session
	Switching workgroups

	Data structures
	General info
	Session
	Workgroup
	Wconfig
	Wtree
	Win
	Buffer
	Parameters

	Tests
	Serialization tests

	Problems
	Buffer was not restored

	Contribute
	Start using the git repo
	Modify something

	Indices and tables

